Topology Final Examination, 2010, B.Math 3rd Yr

(Total 60 mks. Attempt all questions. All questions carry equal (=12) marks. Any result proved in class maybe cited and used without proof to make your answers as brief as possible. Notes and books maybe consulted.)

- 1. (i): Show that the first uncountable ordinal space S_{Ω} is not homeomorphic to the space $\mathbb{R}\setminus\mathbb{Q}$ of irrational numbers with its usual topology.
 - (ii): Prove that the function $\tau: S_{\Omega} \to S_{\Omega}$ defined by :

$$\tau(x) = x_+ := \text{smallest}\{z : z > x\}$$

is not continuous. (Hint: Consider what happens at the first infinite ordinal)

- 2. (i): Show that the space \mathbb{R}_l is totally disconnected (i.e. its connected components are singletons. Here \mathbb{R}_l denotes \mathbb{R} with the lower limit topology)
 - (ii): Prove that $\mathbb{R}_l \times \mathbb{R}_l$ (with the product topology) is not metrisable. .
- 3. (i): Let $f: \mathbb{C} \to \mathbb{C}$ be a continuous function with no zeros. Let $n \neq 0$ be a fixed integer. Prove that there exists a continuous function $h: \mathbb{C} \to \mathbb{C}$ such that $f(x) = h(x)^n$ for all $x \in \mathbb{C}$.
 - (ii): Prove that there exists no continuous function $h: \mathbb{C} \to \mathbb{C}$ satisfying $h(x)^3 = x$ for all $x \in \mathbb{C}$. (Contrast this with the case of \mathbb{R} , where the continuous cube-root function $h(x) = x^{1/3}$ satisfies $h(x)^3 = x$ for all $x \in \mathbb{R}$).
- 4. (i): Let X, Y and Z be path-connected, locally path-connected and semilocally simply-connected spaces. Further assume that Z is simply connected and \widetilde{X} (the simply-connected cover of X) is contractible. Show that every continuous map $f: Z \to X$ is nullhomotopic.
 - (ii): Let $f: S^2 \to \mathbb{RP}^2$ be a continuous map. Show that if f is not nullhomotopic, then card $f^{-1}(x) \geq 2$ for all $x \in \mathbb{RP}^2$. (The natural quotient map $\pi: S^2 \to \mathbb{RP}^2$ shows that this inequality is sharp).
- 5. (i): Compute the fundamental group of $S^1 \vee S^2$.
 - (ii): Let $X = U \cup V$ with U, V and $U \cap V \neq \phi$ all open and path connected, and let $x_0 \in U \cap V$. Suppose U is simply-connected. Show that $\pi_1(X, x_0)$ is a quotient of $\pi_1(V, x_0)$ and describe its kernel.